- culturing said bacterium in the presence of lactose; and retrieving a fucosylated oligosaccharide from said bacterium or from a culture supernatant of said bacterium.
- 12. The method of claim 11, wherein said β -galactosidase gene comprises an E. coli lacZ gene.
- 13. The method of claim 11, wherein said exogenous fucosyltransferase gene encodes $\alpha(1,2)$ fucosyltransferase or $\alpha(1,3)$ fucosyltransferase.
- 14. The method of claim 11, wherein said enteric bacterium comprises *E. coli*.
- 15. The method of claim 14, wherein said colanic acid synthesis gene comprises a wcaJ gene
- **16**. The method of claim **14**, wherein said bacterium further comprises a mutation in a lon gene.
- 17. The method of claim 14, wherein said bacterium comprises a functional, wild-type $E.\ coli\ lac Z^+$ gene inserted into an endogenous lon gene.
- **18**. The method of claim **14**, wherein an endogenous lacZ gene of said *E. coli* is deleted.
- 19. The method of claim 14, wherein said bacterium further comprises an exogenous rcsA or rcsB gene.
- 20. The method of claim 14, wherein said bacterium further comprises a mutation in a lacA gene.
- 21. A method for producing a 3'-sialyl-3-fucosyllactose (3'-S3FL) in a bacterium,
 - said bacterium comprising a functional β-galactosidase gene, an exogenous sialyl-transferase gene, an exogenous fucosyltransferase gene, a GDP-fucose synthesis pathway, a deficient sialic acid catabolic pathway, a sialic acid synthetic capability, and a functional lactose permease gene;
 - culturing said bacterium in the presence of lactose; and retrieving said 3'-S3FL from said bacterium or from a culture supernatant of said bacterium.
- 22. The method of claim 21, wherein said exogenous sialyl-transferase gene encodes $\alpha(2,3)$ sialyl-transferase.
- 23. The method of claim 21, wherein said exogenous fucosyltransferase gene encodes $\alpha(1,3)$ fucosyltransferase.
- 24. The method of claim 21, wherein said deficient sialic acid catabolic pathway comprises a null mutation in endogenous N-acetylneuraminate lyase or N-acetylmannosamine kinase genes.
- **25**. The method of claim **21**, wherein said sialic acid synthetic capability comprises an exogenous UDP-GlcNAc 2-epimerase gene, an exogenous Neu5Ac synthase gene, or an exogenous CMP-Neu5Ac synthetase gene.
- **26**. A method for producing a 3'-sialyl-3-fucosyllactose (3'-S3FL) in an enteric bacterium,
 - said enteric bacterium comprising a functional lacZ gene, an exogenous fucosyltransferase gene, an exogenous sialyltransferase gene, a mutation in an endogenous colanic acid synthesis gene, a functional lactose permease gene, a deficient sialic acid catabolic pathway, and sialic acid synthetic capability;

- culturing said bacterium in the presence of lactose; and retrieving said 3'-S3FL from said bacterium or from a culture supernatant of said bacterium.
- 27. The method of claim 26, wherein said exogenous fucosyltransferase gene encodes $\alpha(1,3)$ fucosyltransferase.
- **28**. The method of claim **26**, wherein said exogenous sialyltransferase gene encodes an $\alpha(2.3)$ sialyl transferase.
- **29**. The method of claim **26**, wherein said deficient sialic acid catabolic pathway comprises a null mutation in endogenous N-acetylneuraminate lyase or N-acetylneuramine kinase genes.
- **30**. The method of claim **26**, wherein said sialic acid synthetic capability comprises an exogenous UDP-GlcNAc 2-epimerase gene, an exogenous Neu5Ac synthase gene, or an exogenous CMP-Neu5Ac synthetase gene.
- 31. A method for phenotypic marking of a gene locus in a host cell, whose native β -galactosidase gene is deleted or inactivated, by utilizing an inserted recombinant β -galactosidase gene engineered to produce a low but detectable level of β -galactosidase activity.
- 32. A method for depleting a bacterial culture of residual lactose in a β -galactosidase negative host cell, whose native β -galactosidase gene is deleted or inactivated, by utilizing an inserted recombinant β -galactosidase gene engineered to produce a low but detectable level of β -galactosidase activity.
- 33. A method for detecting bacterial cell lysis in a culture of a β -galactosidase negative host cell, whose native β -galactosidase gene is deleted or inactivated, by utilizing an inserted recombinant β -galactosidase gene engineered to produce a low but detectable level of β -galactosidase activity.
- **34**. A method of purifying a fucosylated oligosaccharide produced by the method of claim **1**, comprising binding said fucosylated oligosaccharide from a bacterial cell lysate or bacterial cell culture supernatant of said bacterium to a carbon column, and eluting said fucosylated oligosaccharide from said column.
- 35. An isolated *E. coli* bacterium comprising a defective colanic acid synthesis pathway, reduced level of β -galactosidase activity, and an exogenous fucosyl transferase gene.
- **36**. A purified fucosylated oligosaccharide produced by the method of claim **1**.
- 37. A nucleic acid construct comprising an exogenous fucosyltransferase gene transformed into a bacterial host strain comprising a deleted endogenous β -galactosidase gene, a replacement functional β -galactosidase gene of low activity, a GDP-fucose synthesis pathway, a functional lactose permease gene, and a deleted lactose acetyltransferase gene.
- **38**. The nucleic acid construct of claim **37**, wherein said exogenous fucosyltransferase gene encodes $\alpha(1,2)$ fucosyltransferase or $\alpha(1,3)$ fucosyltransferase.

* * * * *